English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  AAA plus proteins and substrate recognition, it all depends on their partner in crime

Dougan, D. A., Mogk, A., Zeth, K., Turgay, K., & Bukau, B. (2002). AAA plus proteins and substrate recognition, it all depends on their partner in crime. FEBS Letters, 529(1), 6-10.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : FEBS Lett.

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Dougan, D. A., Author
Mogk, A., Author
Zeth, K.1, Author           
Turgay, K., Author
Bukau, B., Author
Affiliations:
1Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565164              

Content

show
hide
Free keywords: AAA plus superfamily; adaptor protein; chaperone; protease
 Abstract: Members of the AAA+ superfamily have been identified in all organisms studied to date. They are involved in a wide range of cellular events. In bacteria, representatives of this superfamily are involved in functions as diverse as transcription and protein degradation and play an important role in the protein quality control network. Often they employ a common mechanism to mediate an ATP-dependent unfolding/disassembly of protein-protein or DNA-protein complexes. In an increasing number of examples it appears that the activities of these AAA+ proteins may be modulated by a group of otherwise unrelated proteins, called adaptor proteins. These usually small proteins specifically modify the substrate recognition of their AAA+ partner protein. The occurrence of such adaptor proteins are widespread; representatives have been identified not only in Escherichia coli but also in Bacillus subtilis, not to mention yeast and other eukaryotic organisms. Interestingly, from the currently known examples, it appears that the N domain of AAA+ proteins (the most divergent region of the protein within the family) provides a common platform for the recognition of these diverse adaptor proteins. Finally, the use of adaptor proteins to modulate AAA+ activity is, in some cases, an elegant way to redirect the activity of an AAA+ protein towards a particular substrate without necessarily affecting other activities of that AAA+ protein while, in other cases, the adaptor protein triggers a complete switch in AAA+ activity. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Details

show
hide
Language(s): eng - English
 Dates: 2002-10-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 41695
ISI: 000178468300002
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: FEBS Letters
  Alternative Title : FEBS Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 529 (1) Sequence Number: - Start / End Page: 6 - 10 Identifier: ISSN: 0014-5793