English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Biochemical characterization of a membrane-bound manganese- containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120

Regelsberger, G., Atzenhofer, W., Rüker, F., Peschek, G. A., Jakopitsch, C., Paumann, M., et al. (2002). Biochemical characterization of a membrane-bound manganese- containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. Journal of Biological Chemistry, 277(46), 43615-43622.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : J. Biol. Chem.

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Regelsberger, G.1, Author           
Atzenhofer, W.2, Author           
Rüker, F., Author
Peschek, G. A., Author
Jakopitsch, C., Author
Paumann, M., Author
Furtmüller, P. G., Author
Obinger, C., Author
Affiliations:
1External Organizations, ou_persistent22              
2Huber, Robert / Structure Research, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565155              

Content

show
hide
Free keywords: -
 Abstract: The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta28)) or the hydrophobic and the linker region (MnSOD(Delta60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg(-1) protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta28)) or (MnSOD(Delta60)) concentrations is first- order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 106 M-1 s(-1) (pH 10) and 6 X 10(7) M-1 S-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.

Details

show
hide
Language(s): eng - English
 Dates: 2002-11-15
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 41749
ISI: 000179272000012
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Biological Chemistry
  Alternative Title : J. Biol. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 277 (46) Sequence Number: - Start / End Page: 43615 - 43622 Identifier: ISSN: 0021-9258