English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Water mass transformation and the North Atlantic Current in three multicentury climate model simulations

Langehaug, H. R., Rhines, P. B., Eldevik, T., Mignot, J., & Lohmann, K. (2012). Water mass transformation and the North Atlantic Current in three multicentury climate model simulations. Journal of Geophysical Research-Oceans, 117: C11001. doi:10.1029/2012JC008021.

Item is

Files

show Files
hide Files
:
jgrc12621.pdf (Publisher version), 5MB
Name:
jgrc12621.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
American Geophysical Union
License:
-

Locators

show

Creators

show
hide
 Creators:
Langehaug, H. R., Author
Rhines, P. B., Author
Eldevik, T., Author
Mignot, J., Author
Lohmann, Katja1, Author           
Affiliations:
1Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913553              

Content

show
hide
Free keywords: North Atlantic Current; climate models; water mass transformation
 Abstract: The warm and saline Subtropical Water carried by the North Atlantic Current undergoes substantial transformation on its way to higher latitudes, predominantly from oceanic heat loss to the atmosphere. The geographical distribution of the surface forced water mass transformation is assessed in multicentury climate simulations from three different climate models (BCM, IPSLCM4, and MPI-M ESM), with a particular focus on the eastern subpolar North Atlantic Ocean. A diagnosis, originally introduced by Walin (1982), estimates the surface water mass transformation from buoyancy forcing. While the depth structure of the Atlantic Meridional Overturning Circulation (AMOC) is similar in all models, their climatological heat and freshwater fluxes are very different. Consistently, the models differ in their mean pathways of the North Atlantic Current, location of upper ocean low salinity waters, as well as in sea ice cover. In the two models with an excessive sea ice extent in the Labrador Sea, most of the water mass transformation in the subpolar region occurs in the eastern part (east of 35 degrees W). The variability of the eastern water mass transformation on decadal time scales is related to the variable warm northward flow into the subpolar region, the upper branch of AMOC, where a strengthened flow leads an intensified transformation. This relationship seems to disappear with a weak connection between the Subtropical and Subpolar gyres.

Details

show
hide
Language(s): eng - English
 Dates: 2012-112012-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2012JC008021
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research-Oceans
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 117 Sequence Number: C11001 Start / End Page: - Identifier: -