English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Model oxide-supported metal catalysts – comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate

Wang, H., Kaden, W., Dowler, R., Sterrer, M., & Freund, H.-J. (2012). Model oxide-supported metal catalysts – comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Physical Chemistry Chemical Physics, 14(32), 11525-11533. doi:10.1039/C2CP41459G.

Item is

Files

show Files
hide Files
:
c2cp41459g.pdf (Publisher version), 4MB
Name:
c2cp41459g.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2012
Copyright Info:
RSC
License:
OA Nationallizenz

Locators

show

Creators

show
hide
 Creators:
Wang, Huifeng1, Author           
Kaden, William1, Author           
Dowler, Rhys1, Author           
Sterrer, Martin1, Author           
Freund, Hans-Joachim1, Author           
Affiliations:
1Chemical Physics, Fritz Haber Institute, Max Planck Society, ou_24022              

Content

show
hide
Free keywords: -
 Abstract: Using single-crystalline Fe₃O₄(111) films grown over Pt(111) in UHV as a model-support, we have characterized the nucleation behaviour and chemical properties of Pd particles grown over the film using different deposition techniques with scanning tunnelling microscopy and X-ray photoelectron spectroscopy. Comparison of Pd/Fe₃O₄ samples created via Pd evaporation under UHV conditions and those resulting from the solution deposition of Pd-hydroxo complexes reveals that changes in the interfacial functionalization of such samples (i.e. roughening and hydroxylation) govern the differences in Pd nucleation behavior observed over pristine oxides relative to those exposed to alkaline solutions. Furthermore, it appears that other differences in the nature of the Pd precursor state (i.e. gas-phase Pd in UHV vs. [Pd(OH)₂] n aqueous complexes) play a negligible role in Pd nucleation and growth behaviour at elevated temperatures in UHV, suggesting facile decomposition of the Pd complexes deposited from the liquid phase. Applying temperature programmed desorption and infrared spectroscopy to probe the CO chemisorption properties of such samples after reduction in different reagents (CO, H₂) shows the formation of bimetallic PdFe alloys following reduction in H₂, but monometallic Pd particles after CO reduction.

Details

show
hide
Language(s): eng - English
 Dates: 2012-05-072012-07-022012-07-022012-08-28
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/C2CP41459G
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Chemistry Chemical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge [England] : Royal Society of Chemistry
Pages: - Volume / Issue: 14 (32) Sequence Number: - Start / End Page: 11525 - 11533 Identifier: ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1