English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Penning-trap mass spectrometry of radioactive, highly charged ions with TITAN: Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and the development of a novel Penning trap for cooling highly charged ions

Simon, V. V. (2012). Penning-trap mass spectrometry of radioactive, highly charged ions with TITAN: Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and the development of a novel Penning trap for cooling highly charged ions. PhD Thesis, Ruprecht-Karls Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
2012 Dissertation Vanessa Simon.pdf (Any fulltext), 9MB
Name:
2012 Dissertation Vanessa Simon.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Simon, Vanessa V.1, Author           
Blaum, Klaus, Referee
Crespo López-Urrutia, José R, Referee
Affiliations:
1Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society, ou_904548              

Content

show
hide
Free keywords: -
 Abstract: High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ≈ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97−99Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A ≈ 100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

Details

show
hide
Language(s): eng - English
 Dates: 2012-11-07
 Publication Status: Accepted / In Press
 Pages: XVI, 168 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show