de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation

Saeed, F., Hagemann, S., Saeed, S., & Jacob, D. (2013). Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation. Climate Dynamics, 40, 21-38. doi:10.1007/s00382-012-1480-3.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-EAF7-0 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-EB01-0
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Saeed, Fahad1, Author              
Hagemann, Stefan1, Author              
Saeed, Sajjad, Author              
Jacob, Daniela, Author              
Affiliations:
1Terrestrial Hydrology, The Land in the Earth System, MPI for Meteorology, Max Planck Society, escidoc:913560              

Content

show
hide
Free keywords: -
 Abstract: Since much of the flow of the Indus River originates in the Himalayas, Karakoram and Hindu Kush Mountains, an understanding of weather characteristics leading to precipitation over the region is essential for water resources management. This study examines the influence of upper level mid-latitude circulation on the summer precipitation over upper Indus basin (UIB). Using reanalysis data, a geopotential height index (GH) is defined at 200 hPa over central Asia, which has a significant correlation with the precipitation over UIB. GH has also shown significant correlation with the heat low (over Iran and Afghanistan and adjoining Pakistan), easterly shear of zonal winds (associated with central Asian high) and evapotranspiration (over UIB). It is argued that the geopotential height index has the potential to serve as a precursor for the precipitation over UIB. In order to assess the influence of irrigation on precipitation over UIB, a simplified irrigation scheme has been developed and applied to the regional climate model REMO. It has been shown that both versions of REMO (with and without irrigation) show significant correlations of GH with easterly wind shear and heat low. However contrary to reanalysis and the REMO version with irrigation, the REMO version without irrigation does not show any correlation between GH index and evapotranspiration as well as between geopotential height and precipitation over UIB, which is further confirmed by the quantitative analysis of extreme precipitation events over UIB. It is concluded that although atmospheric moisture over coastal Arabian sea region, triggered by wind shear and advected northward due to heat low, also contribute to the UIB precipitation. However for the availability of necessary moisture for precipitation over UIB, the major role is played by the evapotranspiration of water from irrigation. From the results it may also be inferred that the representation of irrigated water in climate models is unavoidable for studying the impact of global warming over the region. © 2012 Springer-Verlag.

Details

show
hide
Language(s): eng - English
 Dates: 201220122013-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1007/s00382-012-1480-3
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate Dynamics
  Other : Clim. Dyn.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-International
Pages: - Volume / Issue: 40 Sequence Number: - Start / End Page: 21 - 38 Identifier: ISSN: 0930-7575
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/954925568800