English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  New conformally flat initial data for spinning black holes

Dain, S., Lousto, C. O., & Takahashi, R. (2002). New conformally flat initial data for spinning black holes. Physical Review D, 65: 104038.

Item is

Files

show Files
hide Files
:
3036.pdf (Preprint), 171KB
Name:
3036.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Dain, Sergio1, Author
Lousto, Carlos O.1, Author
Takahashi, Ryoji1, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24012              

Content

show
hide
Free keywords: -
 Abstract: We obtain an explicit solution of the momentum constraint for conformally flat, maximal slicing, initial data which gives an alternative to the purely longitudinal extrinsic curvature of Bowen and York. The new solution is related, in a precise form, with the extrinsic curvature of a Kerr slice. We study these new initial data representing spinning black holes by numerically solving the Hamiltonian constraint. They have the following features: (i) they contain less radiation, for all allowed values of the rotation parameter, than the corresponding single spinning Bowen-York black hole; (ii) the maximum rotation parameter J/m(2) reached by this solution is higher than that of the purely longitudinal solution, allowing us thus to describe holes closer to a maximally rotating Kerr one. We discuss the physical interpretation of these properties and their relation with the weak cosmic censorship conjecture. Finally, we generalize the data for multiple black holes using the "puncture" and isometric formulations

Details

show
hide
Language(s): eng - English
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 3036
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 65 Sequence Number: 104038 Start / End Page: - Identifier: -