English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest

Steinfartz, S., Weitere, M., & Tautz, D. (2007). Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Molecular Ecology, 16(21), 4550-4561. doi:10.1111/j.1365-294X.2007.03490.x.

Item is

Files

show Files
hide Files
:
Steinfartz_2007.pdf (Publisher version), 496KB
 
File Permalink:
-
Name:
Steinfartz_2007.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Evolutionary Biology, MPLM; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Steinfartz, Sebastian, Author
Weitere, Markus, Author
Tautz, Diethard1, Author           
Affiliations:
1Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445635              

Content

show
hide
Free keywords: adaptive speciation; amphibians; pond reproduction; population differentiation; Salamandra salamandra; sympatric speciation
 Abstract: Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

Details

show
hide
Language(s): eng - English
 Dates: 2007-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 572220
DOI: 10.1111/j.1365-294X.2007.03490.x
Other: 2868/S 39211
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Molecular Ecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 16 (21) Sequence Number: - Start / End Page: 4550 - 4561 Identifier: ISSN: 0962-1083 (print)
ISSN: 1365-294X (online)