English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns

Domazet-Lošo, T., & Tautz, D. (2010). A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature, 468(7325), 815-818. doi:10.1038/nature09632.

Item is

Files

show Files
hide Files
:
Domazet-Loso_2010.pdf (Publisher version), 372KB
 
File Permalink:
-
Name:
Domazet-Loso_2010.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Evolutionary Biology, MPLM; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Domazet-Lošo, Tomislav1, Author           
Tautz, Diethard1, Author           
Affiliations:
1Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445635              

Content

show
hide
Free keywords: -
 Abstract: Parallels between phylogeny and ontogeny have been discussed for almost two centuries, and a number of theories have been proposed to explain such patterns1. Especially elusive is the phylotypic stage, a phase during development where species within a phylum are particularly similar to each other2, 3, 4, 5, 6. Although this has formerly been interpreted as a recapitulation of phylogeny1, it is now thought to reflect an ontogenetic progression phase2, where strong constraints on developmental regulation and gene interactions exist2, 3. Several studies have shown that genes expressed during this stage evolve at a slower rate, but it has so far not been possible to derive an unequivocal molecular signature associated with this stage7, 8, 9, 10, 11, 12, 13, 14, 15. Here we use a combination of phylostratigraphy16 and stage-specific gene expression data to generate a cumulative index that reflects the evolutionary age of the transcriptome at given ontogenetic stages. Using zebrafish ontogeny and adult development as a model, we find that the phylotypic stage does indeed express the oldest transcriptome set and that younger sets are expressed during early and late development, thus faithfully mirroring the hourglass model of morphological divergence2, 3. Reproductively active animals show the youngest transcriptome, with major differences between males and females. Notably, ageing animals express increasingly older genes. Comparisons with similar data sets from flies and nematodes show that this pattern occurs across phyla. Our results indicate that an old transcriptome marks the phylotypic phase and that phylogenetic differences at other ontogenetic stages correlate with the expression of newly evolved genes.

Details

show
hide
Language(s): eng - English
 Dates: 2010-12-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 521728
DOI: 10.1038/nature09632
Other: 2790/S 39131
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 468 (7325) Sequence Number: - Start / End Page: 815 - 818 Identifier: ISSN: 0028-0836 (print)
ISSN: 1476-4687 (online)