English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Skill, correction, and downscaling of GCM-simulated precipitation

Eden, J., Widmann, M., Grawe, D., & Rast, S. (2012). Skill, correction, and downscaling of GCM-simulated precipitation. Journal of Climate, 25, 3970-3984. doi:10.1175/JCLI-D-11-00254.1.

Item is

Files

show Files
hide Files
:
jcli-25-3970.pdf (Publisher version), 6MB
Name:
jcli-25-3970.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2012
Copyright Info:
American Meteorological Society
License:
-

Locators

show

Creators

show
hide
 Creators:
Eden, J.M., Author
Widmann, M., Author
Grawe, D., Author
Rast, S.1, Author           
Affiliations:
1Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913574              

Content

show
hide
Free keywords: -
 Abstract: The ability of general circulation models (GCMs) to correctly simulate precipitation is usually assessed by comparing simulated mean precipitation with observed climatologies. However, to what extent the skill in simulating average precipitation indicates how well the models represent temporal changes is unclear. A direct assessment of the latter is hampered by the fact that freely evolving climate simulations for past periods are not set up to reproduce the specific evolution of internal atmospheric variability. Therefore, model-to-real-world comparisons of time series of daily, monthly, or annual precipitation are not meaningful. Here, for the first time, the authors quantify GCM skill in simulating precipitation variability using simulations in which the temporal evolution of the large-scale atmospheric state closely matches that of the real world. This is achieved by nudging the atmospheric states in the ECHAM5 GCM, but crucially not the precipitation field itself, toward the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). Global correlation maps between observed and simulated seasonal precipitation allow areas in which simulated future precipitation changes are likely to be meaningful to be identified. In many areas, correlations higher than 0.8 are found. This means also that in these regions the simulated precipitation is a very good predictor for the true precipitation, and thus a statistical correction of the simulated precipitation, which can include a downscaling component, can provide useful estimates for local-scale precipitation. The authors show that a simple scaling of the simulated precipitation performs well in a cross validation and thus appears to be a promising alternative to standard statistical downscaling approaches.

Details

show
hide
Language(s): eng - English
 Dates: 2012-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JCLI-D-11-00254.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Climate
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Boston, MA : American Meteorological Society
Pages: - Volume / Issue: 25 Sequence Number: - Start / End Page: 3970 - 3984 Identifier: ISSN: 0894-8755
CoNE: https://pure.mpg.de/cone/journals/resource/954925559525