English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

Segschneider, J., Beitsch, A., Timmreck, C., Brovkin, V., Ilyina, T., Jungclaus, J. H., et al. (2013). Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations. Biogeosciences, 10, 669-687. doi:10.5194/bg-10-669-2013.

Item is

Files

show Files
hide Files
:
bg-10-669-2013.pdf (Publisher version), 7MB
Name:
bg-10-669-2013.pdf
Description:
Final Revised Paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Segschneider, Joachim1, Author           
Beitsch, Alexander2, Author           
Timmreck, Claudia3, Author           
Brovkin, Victor4, Author           
Ilyina, Tatiana1, Author           
Jungclaus, Johann H.2, Author           
Lorenz, Stephan J.5, Author           
Six, Katharina D.1, Author           
Zanchettin, Davide2, Author           
Affiliations:
1Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913556              
2Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913553              
3Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913574              
4Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913566              
5Numerical Model Development and Data Assimilation, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913555              

Content

show
hide
Free keywords: -
 Abstract: The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric carbon content in response to the land's gain. In summary, we find that the volcanic eruption has long-lasting effects on the carbon cycle: After 200 years, the ocean and the land carbon pools are still different from the pre-eruption state by 3 GtC and 4 GtC, respectively, and the land carbon pools (vegetation and soil) show some long-lasting local anomalies that are only partly visible in the global signal.

Details

show
hide
Language(s): eng - English
 Dates: 201220132013-022013-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/bg-10-669-2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
  Other : Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 10 Sequence Number: - Start / End Page: 669 - 687 Identifier: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006