English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Observing and modeling earth’s energy flows

Stevens, B., & Schwartz, S. E. (2012). Observing and modeling earth’s energy flows. Surveys in Geophysics, 33, 779-816. doi:10.1007/s10712-012-9184-0.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Stevens, Björn1, Author           
Schwartz, Stephen E. , Author
Affiliations:
1Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913570              

Content

show
hide
Free keywords: Climate change – Cloud radiative effects – Aerosol – Energy budget – Climate sensitivity – Radiative forcing
 Abstract: This article reviews, from the authors’ perspective, progress in observing and modeling energy flows in Earth’s climate system. Emphasis is placed on the state of understanding of Earth’s energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m−2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth’s energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth’s energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth’s energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

Details

show
hide
Language(s): eng - English
 Dates: 20122012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s10712-012-9184-0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Surveys in Geophysics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Dordrecht, Holland : D. Reidel Pub. Co.
Pages: - Volume / Issue: 33 Sequence Number: - Start / End Page: 779 - 816 Identifier: ISSN: 0169-3298
CoNE: https://pure.mpg.de/cone/journals/resource/954925485726