English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Influence of controlled nanoscale roughness on physisorbed two- dimensional crystals at graphite-liquid interfaces

Tracz, A., Stabel, A., & Rabe, J. P. (2002). Influence of controlled nanoscale roughness on physisorbed two- dimensional crystals at graphite-liquid interfaces. Langmuir, 18(24), 9319-9326.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Tracz, A.1, Author           
Stabel, A., Author
Rabe, J. P., Author
Affiliations:
1MPI for Polymer Research, Max Planck Society, ou_1309545              

Content

show
hide
Free keywords: -
 Abstract: Scanning tunneling microscopy is used to monitor the influence of a controlled nanometer scale surface roughness on structure and stability of physisorbed, crystallized monolayers at the interface between graphite and molecular solutions. The basal plane of graphite is modified by creating atomic scale defects, which are subsequently thermally oxidized to yield monolayer deep circular pits of controlled two-dimensional density and diameters. Alkanes and alkylated oligothiophenes are adsorbed as flat-lying lamellae from solution. Monolayer crystallization is inhibited when the mean distance between the pits becomes comparable to the size of a single molecule. On a time scale of 100 ms, the critical pit diameter for the formation of ordered domains within a pit is two to three lamella widths (6-8 nm). These domains are stabilized and decoupled from those on the terrace. When the pit diameter is increased by a factor of 8 - 10, the stability inside the pit can be increased by 4 orders of magnitude. This means that the information connected to the orientation of the lamellae of a domain can be stored on time scale of 100 ms in as little as about a dozen molecules.

Details

show
hide
Language(s): eng - English
 Dates: 2002-11-26
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: eDoc: 28444
ISI: 000179428400030
Other: P-02-144
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Langmuir
  Alternative Title : Langmuir
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 (24) Sequence Number: - Start / End Page: 9319 - 9326 Identifier: ISSN: 0743-7463