English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Characterisation of supramolecular structures by novel recoupling methods in solid-state NMR

Hoffmann, A. (2005). Characterisation of supramolecular structures by novel recoupling methods in solid-state NMR. PhD Thesis, Johannes Gutenberg-Universität, Mainz.

Item is

Files

show Files
hide Files
:
Hoffmanndiss.pdf (Any fulltext), 5MB
Name:
Hoffmanndiss.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Hoffmann, Anke1, Author           
Affiliations:
1MPI for Polymer Research, Max Planck Society, ou_1309545              

Content

show
hide
Free keywords: -
 Abstract: In this work, solid-state NMR methods suitable for the investigation of supramolecular systems were developed and improved. In this context, special interest was focussed on non-covalent interactions responsible for the formation of supramolecular structures, such as pi-pi interacions and hydrogen-bonds. In the first part of this work, solid-state NMR methods were presented that provide information on molecular structure and motion via the investigation of anisotropic interactions, namely quadrupole and dipole-dipole couplings, under magic-angle spinning conditions. A two-dimensional 2H double quantum experiment was developed, which is performed under off magic-angle conditions and correlates 2H isotropic chemical shifts with quasistatic DQ-filtered line shapes. From the latter, the quadrupole coupling parameters of samples deuterated at multiple sites can be extracted in a site-selective fashion. Furthermore, 7Li quadrupole parameters of lithium intercalated into TiO2 were determined by NMR experiments performed under static and MAS conditions, and could provide information on the crystal geometry. For the determination of 7Li-7Li dipole-dipole couplings, multiple-quantum NMR experiments were performed. The 1H-13C REREDOR experiment was found to be capable of determining strong proton-carbon dipole-dipole couplings with an accuracy of 500~Hz, corresponding to a determination of proton-carbon chemical-bond lengths with picometer accuracy In the second part of this work, solid-state NMR experiments were combined with quantum-chemical calculations in order to aid and optimise the interpretation of experimental results. The investigations on Calix[4]hydroquinone nanotubes have shown that this combined approach can provide information on the presence of disordered and/or mobile species in supramolecular structures. As a second example, C3-symmetric discs arranging in helical columnar stacks were investigated. In these systems, 1H chemical shifts experience large pi-shifts due to packing effects, which were found to be long-ranged. Moreover, quantum-chemical calculations revealed that helicity in these systems is induced by the propeller-like conformation of the core of the molecules.

Details

show
hide
Language(s): eng - English
 Dates: 2005
 Publication Status: Accepted / In Press
 Pages: -
 Publishing info: Mainz : Johannes Gutenberg-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 251409
Other: Dr 18/05
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show