English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Towards an ultracold three-component Fermi Gas in a two-dimensional optical lattice

Bohn, J. E. (2012). Towards an ultracold three-component Fermi Gas in a two-dimensional optical lattice. Diploma Thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.

Item is

Files

show Files
hide Files
:
Diplomarbeit_jbohn.pdf (Any fulltext), 6MB
Name:
Diplomarbeit_jbohn.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Bohn, Johanna Elise1, Author           
Jochim, Selim1, Advisor           
Affiliations:
1Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society, ou_904547              

Content

show
hide
Free keywords: -
 Abstract: This thesis reports on the progress towards the preparation of an ultracold three component Fermi gas of 6Li in a two-dimensional optical lattice. An optical dipole trap was set up and filled with ultracold atoms from a magnetooptical trap, which were then evaporatively cooled. In a trap with an average trap frequency of 146Hz at an aspect ratio of 1:9:42 a degenerate, non-interacting Fermi gas of 150 000 atoms was created with a lifetime of 42 s. In the same trap a molecular Bose-Einstein condensate of approximately 25 000 6Li2dimers was achieved. Radio frequency pulses were applied to a two-component thermal gas to populate the third component and determine the maximum achievable Rabi frequency with this setup. In the next step we want to transfer the evaporatively cooled cloud from the dipole trap into a two-dimensional potential. As this will be created by an interference pattern of two intersecting laser beams, tests were performed concerning the short- and long-term stability of the optical setup. On the basis of these measurements a compact and stable interferometer casing was designed and will be integrated into the experiment very soon.

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Accepted / In Press
 Pages: VIII, 95 S. : Ill., graph. Darst.
 Publishing info: Heidelberg, Germany : Ruprecht-Karls-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: Diploma

Event

show

Legal Case

show

Project information

show

Source

show