Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Giant Faraday rotation in single- and multilayer graphene

Crassee, I., Levallois, J., Walter, A. L., Ostler, M., Bostwick, A., Rotenberg, E., et al. (2011). Giant Faraday rotation in single- and multilayer graphene. Nature Physics, 7(1), 48-51. doi:10.1038/nphys1816.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Crassee, Iris1, Autor
Levallois, Julien1, Autor
Walter, Andrew L.2, 3, Autor           
Ostler, Markus4, Autor
Bostwick, Aaron3, Autor
Rotenberg, Eli3, Autor
Seyller, Thomas4, Autor
Marel, Dirk van der1, Autor
Kuzmenko, Alexey B.1, Autor
Affiliations:
1Département de Physique de la Matière Condensée, Université de Genève, CH-1211 Genève 4, Switzerland, ou_persistent22              
2Molecular Physics, Fritz Haber Institute, Max Planck Society, Berlin, DE, ou_634545              
3E. O. Lawrence Berkeley National Laboratory, Advanced Light Source, MS6-2100, Berkeley, California 94720, USA, ou_persistent22              
4Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Optical physics;Condensed-matter physics Electronics; photonics and device physics
 Zusammenfassung: The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2010-05-172010-09-142010-11-072011-01
 Publikationsstatus: Erschienen
 Seiten: 4
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Physics
  Andere : Nat. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Pub. Group
Seiten: - Band / Heft: 7 (1) Artikelnummer: - Start- / Endseite: 48 - 51 Identifikator: ISSN: 1745-2473
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000025850