English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Probabilistic Analysis of Knapsack Core Algorithms

Beier, R., & Vöcking, B. (2004). Probabilistic Analysis of Knapsack Core Algorithms. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-04) (pp. 461-470). New York, USA: ACM.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Beier, Rene1, Author           
Vöcking, Berthold1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: We study the average-case performance of algorithms for the binary knapsack problem. Our focus lies on the analysis of so-called {\em core algorithms}, the predominant algorithmic concept used in practice. These algorithms start with the computation of an optimal fractional solution that has only one fractional item and then they exchange items until an optimal integral solution is found. The idea is that in many cases the optimal integral solution should be close to the fractional one such that only a few items need to be exchanged. Despite the well known hardness of the knapsack problem on worst-case instances, practical studies show that knapsack core algorithms can solve large scale instances very efficiently. For example, they exhibit almost linear running time on purely random inputs. In this paper, we present the first theoretical result on the running time of core algorithms that comes close to the results observed in practical experiments. We prove an upper bound of $O(n \, \polylog(n))$ on the expected running time of a core algorithm on instances with $n$ items whose profits and weights are drawn independently, uniformly at random. A previous analysis on the average-case complexity of the knapsack problem proves a running time of $O(n^4)$, but for a different kind of algorithms. The previously best known upper bound on the running time of core algorithms is polynomial as well. The degree of this polynomial, however, is at least a large three digit number. In addition to uniformly random instances, we investigate harder instances in which profits and weights are pairwise correlated. For this kind of instances, we can prove a tradeoff describing how the degree of correlation influences the running time.

Details

show
hide
Language(s): eng - English
 Dates: 2005-06-172004
 Publication Status: Issued
 Pages: -
 Publishing info: New York, USA : ACM
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 231174
Other: Local-ID: C1256428004B93B8-C15BA784494F9094C1256E1D004DD2B0-Beier2004a
 Degree: -

Event

show
hide
Title: Untitled Event
Place of Event: New Orleans, USA
Start-/End Date: 2004-01-11

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-04)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: New York, USA : ACM
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 461 - 470 Identifier: ISBN: 0-89871-558-X