English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression

Mohamed, B. A., Hartmann, N., Tirilomis, P., Sekeres, K., Li, W., Neef, S., et al. (2018). Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression. Science Translational Medicine, 10(458): eaan0724. doi:10.1126/scitranslmed.aan0724.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mohamed, B. A., Author
Hartmann, N., Author
Tirilomis, P., Author
Sekeres, K., Author
Li, W., Author
Neef, S., Author
Richter, Claudia1, Author           
Zeisberg, E. M., Author
Kattner, L., Author
Didié, M., Author
Guan, K., Author
Schmitto, J. D., Author
Lehnart, S. E., Author
Luther, Stefan1, Author           
Voigt, N., Author
Seidler, T., Author
Sossalla, S., Author
Hasenfuss, G., Author
Toischer, K., Author
Affiliations:
1Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063288              

Content

show
hide
Free keywords: -
 Abstract: Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor (RyR2) has been suggested to play a mechanistic role in the development of heart failure (HF) and cardiac arrhythmia. Mice treated with a selective RyR2 stabilizer, rycal S36, showed normalization of SR Ca2+ leak and improved survival in pressure overload (PO) and myocardial infarction (MI) models. The development of HF, measured by echocardiography and molecular markers, showed no difference in rycal S36- versus placebo-treated mice. Reduction of SR Ca2+ leak in the PO model by the rycal-unrelated RyR2 stabilizer dantrolene did not mitigate HF progression. Development of HF was not aggravated by increased SR Ca2+ leak due to RyR2 mutation (R2474S) in volume overload, an SR Ca2+ leak-independent HF model. Arrhythmia episodes were reduced by rycal S36 treatment in PO and MI mice in vivo and ex vivo in Langendorff-perfused hearts. Isolated cardiomyocytes from murine failing hearts and human ventricular failing and atrial nonfailing myocardium showed reductions in delayed afterdepolarizations, in spontaneous and induced Ca2+ waves, and in triggered activity in rycal S36 versus placebo cells, whereas the Ca2+ transient, SR Ca2+ load, SR Ca2+ adenosine triphosphatase function, and action potential duration were not affected. Rycal S36 treatment of human induced pluripotent stem cells isolated from a patient with catecholaminergic polymorphic ventricular tachycardia could rescue the leaky RyR2 receptor. These results suggest that SR Ca2+ leak does not primarily influence contractile HF progression, whereas rycal S36 treatment markedly reduces ventricular arrhythmias, thereby improving survival in mice.

Details

show
hide
Language(s): eng - English
 Dates: 2018-09-122018-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1126/scitranslmed.aan0724
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science Translational Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 12 Volume / Issue: 10 (458) Sequence Number: eaan0724 Start / End Page: - Identifier: -