English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  2'Halo-ATP and -GTP analogues: rational phasing tools for protein crystallography

Gruen, M., Becker, C., Beste, A., Reinstein, J., Scheidig, A. J., & Goody, R. S. (1999). 2'Halo-ATP and -GTP analogues: rational phasing tools for protein crystallography. Protein science, 8(11), 2524-2528. doi:10.1110/ps.8.11.2524.

Item is

Files

show Files
hide Files
:
ProtSci_8_1999_2524.pdf (Any fulltext), 162KB
 
File Permalink:
-
Name:
ProtSci_8_1999_2524.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Locator:
https://dx.doi.org/10.1110/ps.8.11.2524 (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Gruen, Mathias, Author
Becker, Christian, Author
Beste, Andrea, Author
Reinstein, Jochen1, Author           
Scheidig, Axel J., Author
Goody, Roger S., Author
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: -
 Abstract: The solution of the crystallographic macromolecular phase problem requires incorporation of heavy atoms into protein crystals. Several 2'-halogenated nucleotides have been reported as potential universal phasing tools for nucleotide binding proteins. However, only limited data are available dealing with the effect of 2'-substitution on recognition by the protein. We have determined equilibrium dissociation constants of 2'-halogenated ATP analogues for the ATP binding proteins UMP/CMP kinase and the molecular chaperone DnaK. Whereas the affinities to UMP/CMP kinase are of the same order of magnitude as for unsubstituted ATP, the affinities to DnaK are drastically decreased to undetectable levels. For 2'-halogenated GTP analogues, the kinetics of interaction were determined for the small GTPases p21ras(Y32W) (fluorescent mutant) and RabS. The rates of association were found to be within about one order of magnitude of those for the nonsubstituted nucleotides, whereas the rates of dissociation were accelerated by factors of approximately 100 (p21ras) or approximately 10(5) (Rab5), and the resulting equilibrium dissociation constants are in the nm or microM range, respectively. The data demonstrate that 2'halo-ATP and -GTP are substrates or ligands for all proteins tested except the chaperone DnaK. Due to the very high affinities of a large number of GTP binding proteins to guanine nucleotides, even a 10(5)-fold decrease in affinity as observed for Rab5 places the equilibrium dissociation constant in the microM range, so that they are still well suited for crystallization of the G-protein:nucleotide complex.

Details

show
hide
Language(s):
 Dates: 1999-06-081999-09-021999-11-01
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Protein science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Malden, Mass : Wiley-Blackwell
Pages: - Volume / Issue: 8 (11) Sequence Number: - Start / End Page: 2524 - 2528 Identifier: ISSN: 0961-8368