English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Optimal current transfer in dendrites

Bird, A. D., & Cuntz, H. (2016). Optimal current transfer in dendrites. PLoS Computational Biology, 12(5): e1004897. doi:10.1371/journal.pcbi.1004897.

Item is

Files

show Files
hide Files
:
Bird_2016_OptimalCurrentTransfer.pdf (Publisher version), 2MB
Name:
Bird_2016_OptimalCurrentTransfer.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2016
Copyright Info:
Copyright © 2016 Bird, Cuntz

Locators

show
hide
Description:
-
OA-Status:
Gold

Creators

show
hide
 Creators:
Bird, Alex D.1, 2, Author
Cuntz, Hermann1, 2, Author                 
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt, DE, ou_2074314              
2Cuntz Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381227              

Content

show
hide
Free keywords: Algorithms Animals Brain/physiology Computational Biology Computer Simulation Dendrites/*physiology *Models, Neurological Neurons/physiology Synaptic Transmission/*physiology
 Abstract: Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission.

Details

show
hide
Language(s):
 Dates: 2016-05-04
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pcbi.1004897
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Computational Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 12 (5) Sequence Number: e1004897 Start / End Page: - Identifier: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1