Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT

Wopperer, P., De Giovannini, U., & Rubio, A. (2017). Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT. European Physical Journal B, 90(3): 51. doi:10.1140/epjb/e2017-70548-3.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1608.02818.pdf (Preprint), 3MB
Name:
1608.02818.pdf
Beschreibung:
File downloaded from arXiv at 2016-08-15 11:36
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2016
Copyright Info:
© P. Wopperer et al.
:
e2017-70548-3.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
e2017-70548-3.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://arxiv.org/abs/1608.02818 (Preprint)
Beschreibung:
-
OA-Status:
externe Referenz:
https://dx.doi.org/10.1140/epjb/e2017-70548-3 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Wopperer, Philipp1, Autor
De Giovannini, Umberto1, 2, Autor
Rubio, Angel1, 3, 4, Autor           
Affiliations:
1Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain, ou_persistent22              
2Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, ou_persistent22              
3Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
4Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computational Methods
 Zusammenfassung: We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-08-092016-09-192016-12-262017-03-222017-03-22
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1608.02818
DOI: 10.1140/epjb/e2017-70548-3
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : We acknowledge financial support from the European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P) and Grupos Consolidados (IT578-13). This work was partly supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 676580 with the Novel Materials Discovery (NOMAD) laboratory, a European Center of Excellence, H2020-NMP-2014 project MOSTOPHOS (GA no. 646259), and the COST Action MP1306 (EUSpec). Finally, we acknowledge B. Frusteri for his valuable help in testing the code.
Grant ID : 676580
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : We acknowledge financial support from the European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P) and Grupos Consolidados (IT578-13). This work was partly supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 676580 with the Novel Materials Discovery (NOMAD) laboratory, a European Center of Excellence, H2020-NMP-2014 project MOSTOPHOS (GA no. 646259), and the COST Action MP1306 (EUSpec). Finally, we acknowledge B. Frusteri for his valuable help in testing the code.
Grant ID : 646259
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: European Physical Journal B
  Andere : Eur. Phys. J. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Heidelberg : Springer-Verlag Heidelberg
Seiten: - Band / Heft: 90 (3) Artikelnummer: 51 Start- / Endseite: - Identifikator: ISSN: 1434-6028
CoNE: https://pure.mpg.de/cone/journals/resource/954927001233