日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Modelling odor decoding in the antennal lobe by combining sequential firing rate models with bayesian inference

Cuevas Rivera, D., Bitzer, S., & Kiebel, S. J. (2015). Modelling odor decoding in the antennal lobe by combining sequential firing rate models with bayesian inference. PLoS Computational Biology, 11(10):. doi:10.1371/journal.pcbi.1004528.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Rivera_2015.PDF (出版社版), 4MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0001-D702-A
ファイル名:
Rivera_2015.PDF
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Cuevas Rivera, Dario1, 2, 著者
Bitzer, Sebastian1, 3, 著者           
Kiebel, Stefan J.1, 2, 3, 著者           
所属:
1Department of Psychology, TU Dresden, Germany, ou_persistent22              
2Department of Neurology, Biomagnetic Center, Jena University Hospital, Germany, ou_persistent22              
3Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              

内容説明

表示:
非表示:
キーワード: -
 要旨: The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2015-04-012015-08-282015-10-09
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1004528
PMID: 26451888
PMC: PMC4599861
その他: eCollection 2015
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS Computational Biology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: San Francisco, CA : Public Library of Science
ページ: - 巻号: 11 (10) 通巻号: e1004528 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1