日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations

Schneider, C. J., Cuntz, H., & Soltesz, I. (2014). Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS computational biology, 10(10), e1003921. doi:10.1371/journal.pcbi.1003921.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:
非表示:
URL:
http://www.ncbi.nlm.nih.gov/pubmed/25340814 (全文テキスト(全般))
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Schneider, C. J., 著者
Cuntz, H.1, 著者
Soltesz, I., 著者
所属:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt, DE, ou_2074314              

内容説明

表示:
非表示:
キーワード: -
 要旨: Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2014-10-24
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1003921
ISSN: 1553-7358 (Electronic)1553-734X (Linking)
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS computational biology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 10 (10) 通巻号: - 開始・終了ページ: e1003921 識別子(ISBN, ISSN, DOIなど): -