日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Computing Teichmüller Maps between Polygons

Goswami, M., Gu, X., Pingali, V. P., & Telang, G. (2014). Computing Teichmüller Maps between Polygons. Retrieved from http://arxiv.org/abs/1401.6395.

Item is

基本情報

表示: 非表示:
資料種別: 成果報告書
LaTeX : Computing {T}eichm{\"u}ller Maps between Polygons

ファイル

表示: ファイル
非表示: ファイル
:
arXiv:1401.6395.pdf (プレプリント), 4MB
ファイルのパーマリンク:
https://hdl.handle.net/11858/00-001M-0000-0024-4583-A
ファイル名:
arXiv:1401.6395.pdf
説明:
File downloaded from arXiv at 2014-12-01 15:05
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
http://arxiv.org/help/license

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Goswami, Mayank1, 著者           
Gu, Xianfeng2, 著者
Pingali, Vamsi P.2, 著者
Telang, Gaurish2, 著者
所属:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Mathematics, Differential Geometry, math.DG,Mathematics, Complex Variables, math.CV
 要旨: By the Riemann-mapping theorem, one can bijectively map the interior of an $n$-gon $P$ to that of another $n$-gon $Q$ conformally. However, (the boundary extension of) this mapping need not necessarily map the vertices of $P$ to those $Q$. In this case, one wants to find the ``best" mapping between these polygons, i.e., one that minimizes the maximum angle distortion (the dilatation) over \textit{all} points in $P$. From complex analysis such maps are known to exist and are unique. They are called extremal quasiconformal maps, or Teichm\"{u}ller maps. Although there are many efficient ways to compute or approximate conformal maps, there is currently no such algorithm for extremal quasiconformal maps. This paper studies the problem of computing extremal quasiconformal maps both in the continuous and discrete settings. We provide the first constructive method to obtain the extremal quasiconformal map in the continuous setting. Our construction is via an iterative procedure that is proven to converge quickly to the unique extremal map. To get to within $\epsilon$ of the dilatation of the extremal map, our method uses $O(1/\epsilon^{4})$ iterations. Every step of the iteration involves convex optimization and solving differential equations, and guarantees a decrease in the dilatation. Our method uses a reduction of the polygon mapping problem to that of the punctured sphere problem, thus solving a more general problem. We also discretize our procedure. We provide evidence for the fact that the discrete procedure closely follows the continuous construction and is therefore expected to converge quickly to a good approximation of the extremal quasiconformal map.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2014-01-242014-01-24
 出版の状態: オンラインで出版済み
 ページ: 28 pages, 6 figures
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): arXiv: 1401.6395
URI: http://arxiv.org/abs/1401.6395
BibTex参照ID: GoswamiGPT
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: