English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Physical and chemical properties of the waters of saline lakes and their importance for deep-water renewal: Lake Issyk-Kul, Kyrgyzstan

Vollmer, M. K., Weiss, R. F., Williams, R. T., Falkner, K. K., Qiu, X., Ralph, E. A., et al. (2002). Physical and chemical properties of the waters of saline lakes and their importance for deep-water renewal: Lake Issyk-Kul, Kyrgyzstan. Geochimica et Cosmochimica Acta, 66(24), 4235-4246.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Geochim. Cosmochim. Acta

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Vollmer, M. K.1, Author           
Weiss, R. F., Author
Williams, R. T., Author
Falkner, K. K., Author
Qiu, X., Author
Ralph, E. A., Author
Romanovsky, V. V., Author
Affiliations:
1Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              

Content

show
hide
Free keywords: -
 Abstract: The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg(-1). The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20degreesC and I atm Lake Issyk-Kul water is about 530 g m(-3) denser than seawater at the same salinity. The temperature of maximum density at I atm is about 0.15degreesC lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an similar to15 m thick nepheloid layer observed at the bottom of the deep basin. Copyright (C) 2002 Elsevier Science Ltd.

Details

show
hide
Language(s): eng - English
 Dates: 2002-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 14461
ISI: 000179837500003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geochimica et Cosmochimica Acta
  Alternative Title : Geochim. Cosmochim. Acta
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 66 (24) Sequence Number: - Start / End Page: 4235 - 4246 Identifier: ISSN: 0016-7037