English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  How do we grasp (virtual) objects in three-dimensional space?

Stockmeier, K., Bülthoff, H., & Franz, V. (2003). How do we grasp (virtual) objects in three-dimensional space?. Poster presented at Third Annual Meeting of the Vision Sciences Society (VSS 2003), Sarasota, FL, USA.

Item is

Files

show Files
hide Files
:
pdf2247.pdf (Any fulltext), 335KB
Name:
pdf2247.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Stockmeier, K1, 2, Author           
Bülthoff, HH1, 2, Author           
Franz, VH1, 2, Author           
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Jeannerod (1981,1984) studied extensively the relationships between object size and grasping parameters, which has been influential for the interpretation of grasping data. The maximum grip aperture (MGA) scales linearly with object size, but the slope is less than 1 (app. 0.82, cf. Smeets Brenner 99). Here, we investigated if the location of the object in three-dimensional space influences the MGA. As well we addressed the question if the grasping of virtual objects shows the same characteristics as natural prehension. Virtual environments could enable experimenters to easily vary objects after the movement onset and therefore to explore the mechanisms of online control in visually guided movements. A virtual disc (36, 40, or 44 mm in diameter) was rendered using stereo computer graphics in 27 positions in different heights and locations relative to the observer. Virtual, haptic feedback was given using two robot arms (PHANToM TM). One robot arm was connected to the index finger, one to the thumb. Ten participants grasped the discs and transported them to a goal area, where they dropped the discs. The stereoscopically rendered discs were viewed through a mirror, such that the visual and haptic feedback matched. The position of the finger tips was measured using the two robot arms and an Optotrak (TM), in order to test for the accuracy of the PHANToM devices.
The MGA was dependent on the distance of the object with respect to the observers body but not on the height of the disc. Participants scaled their MGA according to the size of the virtual disc, but with a slightly smaller slope (0.64+/−0.06) compared to natural environments. This could indicate that tactile feedback (in addition to haptic feedback) is needed to perform natural grasping movements.

Details

show
hide
Language(s):
 Dates: 2003-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/3.9.383
BibTex Citekey: 2247
 Degree: -

Event

show
hide
Title: Third Annual Meeting of the Vision Sciences Society (VSS 2003)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2003-05-09 - 2003-05-14

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 3 (9) Sequence Number: - Start / End Page: 383 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050