日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Differential involvement of prefrontal and parietal areas in human imitation revealed by fMRI adaptation

Lestou, V., Pollick, F., & Kourtzi, Z. (2003). Differential involvement of prefrontal and parietal areas in human imitation revealed by fMRI adaptation. Poster presented at 33rd Annual Meeting of the Society for Neuroscience (Neuroscience 2003), New Orleans, LA, USA.

Item is

基本情報

表示: 非表示:
資料種別: ポスター

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Lestou, V1, 著者           
Pollick, FE, 著者
Kourtzi, Z1, 2, 著者           
所属:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

内容説明

表示:
非表示:
キーワード: -
 要旨: The neuronal system involved in action understanding and imitation, involves the ventral premotor cortex (Ba44), parietal areas and the Superior Temporal Sulcus (STS). Neuroimaging and neurophysiological studies implicate the ventral premotor cortex in the processing of action goals while the function of the remaining areas is largely unknown. The present study investigated whether the goal and the kinematics of the movement are differentially processed within these cortical areas. We used an event-related fMRI adaptation paradigm, in which fMRI responses to two sequentially repeated stimuli are lower than for different stimuli. Using kinematics morphs (Hill Pollick, 2000) we tested the hypothesis that the premotor cortex in humans processes information about the goal of an action while parietal regions code for the kinematics of the movement. Four different action types and their kinematics morphs were used for the experiments. We functionally localised the brain areas involved in action understanding and imitation. We then tested for fMRI responses in the different experimental conditions during the event related scans. In the first series of experiments we showed that the premotor cortex represents the goal of the movements independent of their kinematics. Adaptation effects were observed across changes in the movement kinematics in the premotor cortex but not in parietal regions. These results suggest that the premotor cortex represents the goal of movements independent of their kinematics, while parietal regions encode information about the movement kinematics. Surprisingly, adaptation effects in hMT+/V5 and STS were similar to these in the premotor cortex. No differences across conditions were observed in early visual areas (i.e. V1). Subsequent experiments tested fMRI responses when the kinematics of the action remained the same while the goal of the action changed.

資料詳細

表示:
非表示:
言語:
 日付: 2003-11
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): URI: http://www.sfn.org/index.aspx?pagename=annualmeeting_futureandpast
BibTex参照ID: LestouPK2003
 学位: -

関連イベント

表示:
非表示:
イベント名: 33rd Annual Meeting of the Society for Neuroscience (Neuroscience 2003)
開催地: New Orleans, LA, USA
開始日・終了日: -

訴訟

表示:

Project information

表示:

出版物

表示: