日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Bayesian Neural System identification: error bars, receptive fields and neural couplings

Gerwinn, S., Seeger, M., Zeck, G., & Bethge, M. (2007). Bayesian Neural System identification: error bars, receptive fields and neural couplings. Poster presented at 31st Göttingen Neurobiology Conference, Göttingen, Germany.

Item is

基本情報

表示: 非表示:
資料種別: ポスター

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Gerwinn, S1, 2, 著者           
Seeger, M2, 著者           
Zeck, G, 著者
Bethge, M1, 著者           
所属:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

内容説明

表示:
非表示:
キーワード: -
 要旨: The task of system identification lies at the heart of neural data analysis. Bayesian system identification methods provide a powerful toolbox which allows one to make inferences over stimulus-neuron and neuron-neuron dependencies in a principled way. Rather than reporting only the most likely parameters, the posterior distribution obtained in the Bayesian approach informs us about the range of parameter values that are consistent with the observed data and the assumptions made. In other words, Bayesian receptive fields always come with error bars. Since the amount of data from neural recordings is limited, the error bars are as important as the receptive field itself. Here we apply a recently developed approximation of Bayesian inference to a multi-cell response model consisting of a set of coupled units, each of which being a Linear-Nonlinear-Poisson (LNP) cascade neuron model. The instantaneous firing rate of each unit depends multiplicatively on both the spike train history of the units and the stimulus. Parameter fitting in this model has been shown to be a convex optimization problem (Paninski 2004) that can be solved efficiently, scaling linearly in the number of events, neurons and history-size. By doing inference in such a model one can estimate excitatory and inhibitory interactions between the neurons and the dependence of the stimulus. In addition, the Bayesian framework allows one not only to put error bars on the inferred parameter values but also to quantify the predictive power of the model in terms of the marginal likelihood. As a sanity check of the new technique, and also to explore its limitations, we first verify for artificially generated data that we are able to infer the true underlying model. Then we apply the method to recordings from retinal ganglion cells (RGC) responding to white noise (m-sequence) stimulation. The figure shows both the inferred receptive fields (lower) as well as the confidence range of the sorted pixel values (upper) when using a different fraction of the data (0,10,50, and 100 ). We also compare the results with the receptive fields derived with classical linear correlation analysis and maximum likelihood estimation.

資料詳細

表示:
非表示:
言語:
 日付: 2007-04
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): URI: http://www.neuro.uni-goettingen.de/nbc.php?sel=archiv
BibTex参照ID: 4346
 学位: -

関連イベント

表示:
非表示:
イベント名: 31st Göttingen Neurobiology Conference
開催地: Göttingen, Germany
開始日・終了日: -

訴訟

表示:

Project information

表示:

出版物

表示: