日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Learned non-rigid object motion is a view-invariant cue to recognizing novel objects

Chuang, L., Vuong, Q., & Bülthoff, H. (2012). Learned non-rigid object motion is a view-invariant cue to recognizing novel objects. Frontiers in Computational Neuroscience, 6(26), 1-8. doi:10.3389/fncom.2012.00026.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Chuang, LL1, 著者           
Vuong, QC1, 著者           
Bülthoff, HH1, 著者           
所属:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

内容説明

表示:
非表示:
キーワード: -
 要旨: There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint.

資料詳細

表示:
非表示:
言語:
 日付: 2012-05
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Frontiers in Computational Neuroscience
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 6 (26) 通巻号: - 開始・終了ページ: 1 - 8 識別子(ISBN, ISSN, DOIなど): -