Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation

Claussen, M., Selent, K., Brovkin, V., Raddatz, T., & Gayler, V. (2013). Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation. Biogeosciences, 10, 3593-3604. doi:10.5194/bg-10-3593-2013.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
bg-10-3593-2013.pdf (Verlagsversion), 3MB
Name:
bg-10-3593-2013.pdf
Beschreibung:
Final Revised Paper
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Claussen, Martin1, Autor                 
Selent, Katharina, Autor
Brovkin, Victor2, Autor                 
Raddatz, Thomas3, Autor           
Gayler, Veronika2, Autor                 
Affiliations:
1Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913564              
2Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913566              
3Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913562              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The factor separation of Stein and Alpert (1993) is applied to simulations with the MPI Earth system model to determine the factors which cause the differences between vegetation patterns in glacial and pre-industrial climate. The factors firstly include differences in the climate, caused by a strong increase in ice masses and the radiative effect of lower greenhouse gas concentrations; secondly, differences in the ecophysiological effect of lower glacial atmospheric CO2 concentrations; and thirdly, the synergy between the pure climate effect and the pure effect of changing physiologically available CO2. It is has been shown that the synergy can be interpreted as a measure of the sensitivity of ecophysiological CO2 effect to climate. The pure climate effect mainly leads to a contraction or a shift in vegetation patterns when comparing simulated glacial and pre-industrial vegetation patterns. Raingreen shrubs benefit from the colder and drier climate. The pure ecophysiological effect of CO2 appears to be stronger than the pure climate effect for many plant functional types – in line with previous simulations. The pure ecophysiological effect of lower CO2 mainly yields a reduction in fractional coverage, a thinning of vegetation and a strong reduction in net primary production. The synergy appears to be as strong as each of the pure contributions locally, but weak on global average for most plant functional types. For tropical evergreen trees, however, the synergy is strong on global average. It diminishes the difference between glacial and pre-industrial coverage of tropical evergreen trees, due to the pure climate effect and the pure ecophysiological CO2 effect, by approximately 50 per cent.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-1020122013-06-032013-06-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/bg-10-3593-2013
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biogeosciences
  Andere : Biogeosciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Seiten: - Band / Heft: 10 Artikelnummer: - Start- / Endseite: 3593 - 3604 Identifikator: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006