Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Numerical Analysis of Electroosmotic Flow in Dense Regular and Random Arrays of Impermeable, Nonconducting Spheres

Hlushkou, D., Seidel-Morgenstern, A., & Tallarek, U. (2005). Numerical Analysis of Electroosmotic Flow in Dense Regular and Random Arrays of Impermeable, Nonconducting Spheres. Langmuir, 21(13), 6097-6112. doi:10.1021/la050239z.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hlushkou, D.1, Autor           
Seidel-Morgenstern, A.1, 2, Autor           
Tallarek, U.1, Autor
Affiliations:
1Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
2Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a numerical scheme for analyzing steady-state isothermal electroosmotic flow (EOF) in three-dimensional random porous media, involving solution of the coupled Poisson, Nernst-Planck, and Navier-Stokes equations. While traditional finite-difference methods were used to resolve the Poisson-Nernst-Planck problem, the (electro)hydrodynamics has been addressed with high efficiency using the lattice-Boltzmann method. The developed model allows simulation of electrokinetic transport under most general conditions, including arbitrary value and distribution of electrokinetic potential at the solid-liquid interface, electrolyte composition, and pore space morphology. The approach provides quantitative information on a spatial distribution of simulated velocities. This feature was utilized to characterize EOF fields in regular and random, confined and bulk packings of hard (i.e., impermeable, nonconducting) spheres. Important aspects of pore space morphology (sphere size distribution), surface heterogeneity (mismatch in electrokinetic potentials at confining wall and sphere surface), and fluid phase properties (electrical double layer thickness) were investigated with respect to their influence on the EOF dynamics over microscopic and macroscopic spatial domains. Most important is the observation of a generally nonuniform pore-level EOF velocity profile in the sphere packings (even in the thin double layer limit) which is caused by pore space morphology and which is in contrast to the pluglike velocity distribution in a single, straight capillary under the same conditions. Copyright © 2005 American Chemical Society [accessed 2013 November 27th]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2005
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 233440
Anderer: 39/05
DOI: 10.1021/la050239z
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Langmuir
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Columbus, OH : American Chemical Society
Seiten: - Band / Heft: 21 (13) Artikelnummer: - Start- / Endseite: 6097 - 6112 Identifikator: ISSN: 0743-7463
CoNE: https://pure.mpg.de/cone/journals/resource/954925541194