日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Rigorous Dynamic Model of a DMFC based on Maxwell-Stefan Mass Transport Equations and a Flory-Huggins Activity Model : Formulation and Experimental Validation

Schultz, T., & Sundmacher, K. (2005). Rigorous Dynamic Model of a DMFC based on Maxwell-Stefan Mass Transport Equations and a Flory-Huggins Activity Model: Formulation and Experimental Validation. Journal of Power Sources, 145, 435-462. doi:10.1016/j.jpowsour.2005.02.036.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Schultz, Thorsten1, 著者           
Sundmacher, Kai1, 2, 著者           
所属:
1Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

内容説明

表示:
非表示:
キーワード: -
 要旨: The Direct Methanol Fuel Cell (DMFC) is a promising technology as mobile power supply. But methanol is problematic as it permeates through the cell membrane (crossover) and is oxidised with oxygen at the cathode, leading to a significantly reduced cell voltage and fuel efficiency. Also notable amounts of water pass the membrane. This can result in a flooding of the cathode leading to reduced cell power or even breakdown of the cell. To understand the internal physico-chemical phenomena, a rigorous dynamic process model is formulated. Key element with respect to mass transport is the membrane. It is a cation exchange polymer with nanopores inside which protons, water and methanol are mobile. In the DMFC the membrane is in contact with a liquid phase (water-methanol solution) on the anode side, and with a gas phase (air) on the cathode side. The common materials (e.g. NAFION by DuPont) exhibit significant differences in their water uptake from liquid and gas phase, and the mass transport parameters show a strong dependence on the water content. Therefore the complex swelling behaviour and the phase equilibria on both sides have to be accounted for. In the presented model mass transport is described using the generalised Maxwell-Stefan equations (dusty fluid model) and an activity model for the mobile components inside the membrane material based on a Flory-Huggins approach. This activity model is also used for the anode side phase equilibrium, whereas for the cathode side phase equilibrium an empirical approach is used based on literature data. Only the binary diffusivities in the membrane and the rate constants of the electrochemical reactions are free parameters, all other model parameters are taken from the literature. Simulation results show good agreement with experimental methanol and water crossover fluxes obtained from a fully automated DMFC miniplant and own DMFCs.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2005
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 210670
その他: 27/05
DOI: 10.1016/j.jpowsour.2005.02.036
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of Power Sources
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 145 通巻号: - 開始・終了ページ: 435 - 462 識別子(ISBN, ISSN, DOIなど): -