Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Does the integration of the dynamic nitrogen cycle in a terrestrial biosphere model improve the long-term trend of the leaf area index?

Guenet, B., Cadule, P., Zaehle, S., Piao, S. L., Peylin, P., Maignan, F., et al. (2013). Does the integration of the dynamic nitrogen cycle in a terrestrial biosphere model improve the long-term trend of the leaf area index? Climate Dynamics, 40, 2535-2548. doi:10.1007/s00382-012-1388-y.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC1796.pdf (Verlagsversion), 894KB
 
Datei-Permalink:
-
Name:
BGC1796.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Guenet, B., Autor
Cadule, P., Autor
Zaehle, Sönke1, Autor           
Piao, S. L., Autor
Peylin, P., Autor
Maignan, F., Autor
Ciais, P., Autor
Friedlingstein, P., Autor
Affiliations:
1Terrestrial Biosphere Modelling & Data assimilation, Dr. S. Zähle, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497787              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The carbon cycle strongly interacts with the nitrogen cycle. Several observations show that the effects of global change on primary production and carbon storage in plant biomass and soils are partially controlled by N availability. Nevertheless, only a small number of terrestrial biosphere models represent explicitly the nitrogen cycle, despite its importance on the carbon cycle and on climate. These models are difficult to evaluate at large spatiotemporal scales because of the scarcity of data at the global scale over a long time period. In this study, we benchmark the capacity of the O–CN global terrestrial biosphere model to reproduce temporal changes in leaf area index (LAI) at the global scale observed by NOAA_AVHRR satellites over the period 1982–2002. Using a satellite LAI product based on the normalized difference vegetation index of global inventory monitoring and modelling studies dataset, we estimate the long-term trend of LAI and we compare it with the results from the terrestrial biosphere models, either with (O–CN) or without (O–C) a dynamic nitrogen cycle coupled to the carbon–water-energy cycles. In boreal and temperate regions, including a dynamic N cycle (O–CN) improved the fit between observed and modeled temporal changes in LAI. In contrast, in the tropics, simulated LAI from the model without the dynamic N cycle (O–C) better matched observed changes in LAI over time. Despite differential regional trends, the satellite estimate suggests an increase in the global average LAI during 1982–2002 by 0.0020 m2 m-2 y-1. Both versions of the model substantially overestimated the rate of change in LAI over time (0.0065 m2 m-2 y-1 for O–C and 0.0057 m2 m-2 y-1 for O–CN), suggesting that some additional limitation mechanisms are missing in the model. We also estimated the relative importance of climate, CO2 and N deposition as potential drivers of the temporal changes in LAI.We found that recent climate change better explained temporal changes in LAI when the dynamic N cycle was included in the model (higher ranked fit for O–CN vs. O–C). Using the O–C configuration to estimate the direct effect of climate on LAI, we quantified the importance of climate-N cycle feedbacks in explaining the LAI response. We found that the warming-induced release of N from soil organic matter decomposition explains 17.5 % of the global trend in LAI over time, however, reaching up to 40.9 % explained variance in the boreal zone, which is a more important contribution than increasing anthropogenic nitrogen deposition. Our analysis supports a strong connection between warming, N cycling, and vegetation productivity. These findings underscore the importance of including N cycling in global-scale models of vegetation response to environmental change.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-05-032012-05-222013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC1796
DOI: 10.1007/s00382-012-1388-y
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Climate Dynamics
  Andere : Clim. Dyn.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Heidelberg : Springer-International
Seiten: - Band / Heft: 40 Artikelnummer: - Start- / Endseite: 2535 - 2548 Identifikator: ISSN: 0930-7575
CoNE: https://pure.mpg.de/cone/journals/resource/954925568800