English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A general model for the light-use efficiency of primary production

Haxeltine, A., & Prentice, I. C. (1996). A general model for the light-use efficiency of primary production. Functional Ecology, 10(5), 551-561. doi:10.2307/2390165.

Item is

Files

show Files
hide Files
:
BGC0015.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0015.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.2307/2390165 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Haxeltine, A., Author
Prentice, I. C.1, Author           
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: climate change; net primary production; photosynthesis Leaf nitrogen distribution; daily canopy photosynthesis; stomatal conductance; solar-radiation; CO2 concentrations; atmospheric CO2; climate change; elevated CO2; carbon gain; plants
 Abstract: 1. Net primary production (NPP) by terrestrial ecosystems appears to be proportional to absorbed photosynthetically active radiation (APAR) on a seasonal and annual basis. This observation has been used in 'diagnostic' models that estimate NPP from remotely sensed vegetation indices. In 'prognostic' process-based models carbon fluxes are more commonly integrated with respect to leaf area index assuming invariant leaf photosynthetic parameters. This approach does not lead to a proportional relationship between NPP and APAR. However, leaf nitrogen content and Rubisco activity are known to vary seasonally and with canopy position, and there is evidence that this variation takes place in such a way as to nearly optimize total canopy net photosynthesis. 2. Using standard formulations for the instantaneous response of leaf net photosynthesis to APAR, we show that the optimized canopy net photosynthesis is proportional to APAR. This theory leads to reasonable values for the maximum (unstressed) light-use efficiency of gross and net primary production of C-3 plants at current ambient CO2, comparable with empirical estimates for agricultural crops and forest plantations. 3. By relating the standard formulations to the Collatz-Farquhar model of photosynthesis, we show that a range of observed physiological responses to temperature and CO2 can be understood as consequences of the optimization. These responses include the CO2 fertilization response and stomatal closure in C-3 plants, the increase of leaf N concentration with decreasing growing season temperature, and the downward acclimation of leaf respiration and N content with increasing ambient CO2. The theory provides a way to integrate diverse experimental observations into a general framework for modelling terrestrial primary production.

Details

show
hide
Language(s): eng - English
 Dates: 1996
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0015
DOI: 10.2307/2390165
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Functional Ecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford, U.K. : Blackwell Scientific Publications
Pages: - Volume / Issue: 10 (5) Sequence Number: - Start / End Page: 551 - 561 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925501172
ISSN: 0269-8463