English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM)

Beer, C., Lucht, W., Gerten, D., Thonicke, K., & Schmullius, C. (2007). Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Global Biogeochemical Cycles, 21(1), GB1012. doi:10.1029/2006GB002760.

Item is

Files

show Files
hide Files
:
BGC0973.pdf (Publisher version), 611KB
 
File Permalink:
-
Name:
BGC0973.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC0973s1.zip (Supplementary material), 492KB
 
File Permalink:
-
Name:
BGC0973s1.zip
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/zip
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2006GB002760 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Beer, C.1, Author           
Lucht, W., Author
Gerten, D., Author
Thonicke, K., Author
Schmullius, C., Author
Affiliations:
1Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497760              

Content

show
hide
Free keywords: Net primary production Russian terrestrial ecosystems Leaf-area Biological production Aggregated estimation Northern-hemisphere Thermal dynamics Basic parameters Climate-change Water-balance
 Abstract: [ 1] The current latitudinal gradient in biomass suggests a climate-driven limitation of biomass in high latitudes. Understanding of the underlying processes, and quantification of their relative importance, is required to assess the potential carbon uptake of the biosphere in response to anticipated warming and related changes in tree growth and forest extent in these regions. We analyze the hydrological effects of thawing and freezing of soil on vegetation carbon density (VCD) in permafrost-dominated regions of Siberia using a process-based biogeochemistry-biogeography model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). The analysis is based on spatially explicit simulations of coupled daily thaw depth, site hydrology, vegetation distribution, and carbon fluxes influencing VCD subject to climate, soil texture, and atmospheric CO2 concentration. LPJ represents the observed high spring peak of runoff of large Arctic rivers, and simulates a realistic fire return interval of 100 to 200 years in Siberia. The simulated VCD changeover from taiga to tundra is comparable to inventory-based information. Without the consideration of freeze-thaw processes VCD would be overestimated by a factor of 2 in southern taiga to a factor of 5 in northern forest tundra, mainly because available soil water would be overestimated with major effects on fire occurrence and net primary productivity. This suggests that forest growth in high latitudes is not only limited by temperature, radiation, and nutrient availability but also by the availability of liquid soil water. [References: 68]

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2006GB002760
Other: BGC0973
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 21 (1) Sequence Number: - Start / End Page: GB1012 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236