English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling

Knorr, W., & Kattge, J. (2005). Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biology, 11(8), 1333-1351.

Item is

Files

show Files
hide Files
:
BGC0823.pdf (Publisher version), 466KB
 
File Permalink:
-
Name:
BGC0823.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Knorr, W.1, Author           
Kattge, Jens2, Author           
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              
2TRY: Global Initiative on Plant Traits, Dr. J. Kattge, Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497793              

Content

show
hide
Free keywords: Carbon cycle Climate change Ecosystem models Eddy covariance Monte carlo Parameter estimation Photosynthesis Probability density function Respiration Stomatal conductance Soil respiration Climate-change Carbon-cycle Biosphere CO2 Uncertainties Temperature Assimilation
 Abstract: Effective measures to counter the rising levels of carbon dioxide in the Earth's atmosphere require that we better understand the functioning of the global carbon cycle. Uncertainties about, in particular, the terrestrial carbon cycle's response to climate change remain high. We use a well-known stochastic inversion technique originally developed in nuclear physics, the Metropolis algorithm, to determine the full probability density functions (PDFs) of parameters of a terrestrial ecosystem model. By thus assimilating half-hourly eddy covariance measurements of CO2 and water fluxes, we can substantially reduce the uncertainty of approximately five model parameters, depending on prior uncertainties. Further analysis of the posterior PDF shows that almost all parameters are nearly Gaussian distributed, and reveals some distinct groups of parameters that are constrained together. We show that after assimilating only 7 days of measurements, uncertainties for net carbon uptake over 2 years for the forest site can be substantially reduced, with the median estimate in excellent agreement with measurements. [References: 38]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0823
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Change Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford, UK : Blackwell Science
Pages: - Volume / Issue: 11 (8) Sequence Number: - Start / End Page: 1333 - 1351 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925618107
ISSN: 1354-1013