English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Diurnal and spatial variation of xylem dielectric constant in Norway spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry

Mcdonald, K. C., Zimmermann, R., & Kimball, J. S. (2002). Diurnal and spatial variation of xylem dielectric constant in Norway spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry. IEEE Transactions on Geoscience and Remote Sensing, 40(9), 2063-2082.

Item is

Files

show Files
hide Files
:
BGC0506.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0506.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Mcdonald, K. C., Author
Zimmermann, R.1, Author           
Kimball, J. S., Author
Affiliations:
1Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              

Content

show
hide
Free keywords: dielectric constant; vegetation; xylem chemistry; xylem sap flux; xylem water status Walnut orchard; backscatter; vegetation; model
 Abstract: Spatial and temporal variations in vegetation dielectric properties strongly influence the microwave backscatter characteristics of forested landscapes. This paper examines the relationship between xylem tissue dielectric constant, xylem sap flux density, and xylem sap chemical composition as measured in the stems of two Norway Spruce (Picea abies [L.] Karst.) trees in the Fichtelgebirge region of Northern Bavaria, Germany. Dielectric constant and xylem sap flux were monitored continuously from June through October 1995, at several heights along the tree trunks. At the end of the measurement series, each tree was harvested, and its xylem sap extracted and analyzed to determine the concentrations of amino acids and cations. Results show that the sap flux density was correlated with vapor pressure deficit (VPD) at all heights in the stem. In contrast, the xylem tissue dielectric constant is influenced by VPD but can exhibit a significant temporal lag relative to changes in VPD. This lag varies with position along the tree trunk. The temporal variability of the dielectric constant is compared with both trees at several positions along the tree trunks. Results of xylem sap chemical analysis are presented. We show that spatial and temporal variability in the xylem tissue dielectric constant is influenced not only by water content, but by variations in xylem sap chemistry as well. This has important implications for microwave remote sensing of forested landscapes, as useful information may be acquired regarding stand physiology and water relations and where variations in dielectric properties within individual trees and across geographic areas can be significant error sources for forest inventory mapping.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0506
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: IEEE Transactions on Geoscience and Remote Sensing
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 40 (9) Sequence Number: - Start / End Page: 2063 - 2082 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/1000000000223200_1
ISSN: 1558-0644