Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Stability constraints and protein evolution: the role of chain length, composition and disulfide

Bastolla, U., & Demetrius, L. (2005). Stability constraints and protein evolution: the role of chain length, composition and disulfide. Protein Engineering Design and Selection, 18(9), 405-415. doi:10.1093/protein/gzi045.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : peds

Dateien

einblenden: Dateien
ausblenden: Dateien
:
405.pdf (beliebiger Volltext), 191KB
 
Datei-Permalink:
-
Name:
405.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Molecular Genetics, MBMG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: INSTITUT
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bastolla, U., Autor
Demetrius, Lloyd1, Autor           
Affiliations:
1Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: disulfide bonds folding thermodynamics protein evolution protein folding
 Zusammenfassung: Stability of the native state is an essential requirement in protein evolution and design. Here we investigated the interplay between chain length and stability constraints using a simple model of protein folding and a statistical study of the Protein Data Bank. We distinguish two types of stability of the native state: with respect to the unfolded state (unfolding stability) and with respect to misfolded configurations (misfolding stability). Several contributions to stability are evaluated and their correlations are disentangled through principal components analysis, with the following main results. (1) We show that longer proteins can fulfil more easily the requirements of unfolding and misfolding stability, because they have a higher number of native interactions per residue. Consistently, in longer proteins native interactions are weaker and they are less optimized with respect to non-native interactions. (2) Stability against misfolding is negatively correlated with the strength of native interactions, which is related to hydrophobicity. Hence there is a trade-off between unfolding and misfolding stability. This trade-off is influenced by protein length: less hydrophobic sequences are observed in very long proteins. (3) The number of disulfide bonds is positively correlated with the deficit of free energy stabilizing the native state. Chain length and the number of disulfide bonds per residue are negatively correlated in proteins with short chains and uncorrelated in proteins with long chains. (4) The number of salt bridges per residue and per native contact increases with chain length. We interpret these observations as an indication that the constraints imposed by unfolding stability are less demanding in long proteins and they are further reduced by the competing requirement for stability against misfolding. In particular, disulfide bonds appear to be positively selected in short proteins, whereas they evolve in an effectively neutral way in long proteins.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2005-09-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 264913
DOI: 10.1093/protein/gzi045
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Protein Engineering Design and Selection
  Alternativer Titel : peds
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 18 (9) Artikelnummer: - Start- / Endseite: 405 - 415 Identifikator: ISSN: 1741-0134