日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress

Ralser, M., Wamelink, M. M., Kowald, A., Gerisch, B., Heeren, G., Struys, E. A., Klipp, E., Jakobs, C., Breitenbach, M., Lehrach, H., & Krobitsch, S. (2007). Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. Journal of Biology, 6(4), 10-10. doi:10.1186/jbiol61.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文
その他のタイトル : J Biol

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Ralser, Markus1, 著者           
Wamelink, Mirjam M., 著者
Kowald, Axel2, 著者           
Gerisch, Birgit3, 著者           
Heeren, Gino, 著者
Struys, Eduard A., 著者
Klipp, Edda2, 著者           
Jakobs, Cornelis, 著者
Breitenbach, Michael, 著者
Lehrach, Hans1, 著者           
Krobitsch, Sylvia4, 著者           
所属:
1Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              
2Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433554              
3Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433558              
4Neurodegenerative Disorders (Sylvia Krobitsch), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479661              

内容説明

表示:
非表示:
キーワード: -
 要旨: Background Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. Results We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide. Here we show that this phenotype is conserved in Caenorhabditis elegans and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool. Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux. Conclusion The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress. As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2007
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 336973
DOI: 10.1186/jbiol61
URI: http://jbiol.com/content/pdf/jbiol61.pdf
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of Biology
  出版物の別名 : J Biol
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 6 (4) 通巻号: - 開始・終了ページ: 10 - 10 識別子(ISBN, ISSN, DOIなど): ISSN: 1475-4924