English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Identification of tyrosine 189 and asparagine 358 of the cholecystokinin 2 receptor in direct interaction with the crucial C-terminal amide of cholecystokinin by molecular modeling, site-directed mutagenesis, and structure/affinity studies

Gales, C., Poirot, M., Taillefer, J., Maigret, B., Martinez, J., Moroder, L., et al. (2003). Identification of tyrosine 189 and asparagine 358 of the cholecystokinin 2 receptor in direct interaction with the crucial C-terminal amide of cholecystokinin by molecular modeling, site-directed mutagenesis, and structure/affinity studies. Molecular Pharmacology, 63(5), 973-982.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Mol. Pharmacol.

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gales, C., Author
Poirot, M., Author
Taillefer, J., Author
Maigret, B., Author
Martinez, J., Author
Moroder, L.1, Author           
Escrieut, C., Author
Pradayrol, L., Author
Fourmy, D., Author
Silvente-Poirot, S., Author
Affiliations:
1Moroder, Luis / Bioorganic Chemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565160              

Content

show
hide
Free keywords: -
 Abstract: The cholecystokinin (CCK) receptors CCK1R and CCK2R exert important central and peripheral functions by binding the neuropeptide cholecystokinin. Because these receptors are potential therapeutic targets, great interest has been devoted to the identification of efficient ligands that selectively activate or inhibit these receptors. A complete mapping of the CCK binding site in these receptors would help to design new CCK ligands and to optimize their properties. In this view, a molecular model of the CCK2R occupied by CCK was built to identify CCK2R residues that interact with CCK functional groups. No such study has yet been reported for the CCK2R. Docking of CCK in the receptor was performed by taking into account our previous mutagenesis data and by using, as constraint, the direct interaction that we demonstrated between His207 in the CCK2R and Asp8 of CCK (Mol Pharmacol 54:364-371, 1998; J Biol Chem 274:23191-23197, 1999). Two residues that had not been revealed in our previous mutagenesis studies, Tyr189 (Y4.60) and Asn358 (N6.55), were identified in interaction via hydrogen bonds with the C-terminal amide of CCK, a crucial functional group of the peptide. Mutagenesis of Tyr189 (Y4.60) and Asn358 (N6.55) as well as structure-affinity studies with modified CCK analogs validated these interactions and the involvement of both residues in the CCK binding site. These results indicate that the present molecular model is an important tool to identify direct contact points between CCK and the CCK2R and to rapidly progress in mapping of the CCK2R binding site. Moreover, comparison of the present CCK2R.CCK molecular model with that of CCK1R.CCK, which we have previously published and validated, clearly argues that the positioning of CCK in these receptors is different.

Details

show
hide
Language(s): eng - English
 Dates: 2003-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 41479
ISI: 000182238900003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Molecular Pharmacology
  Alternative Title : Mol. Pharmacol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 63 (5) Sequence Number: - Start / End Page: 973 - 982 Identifier: ISSN: 0026-895X