日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects

Tkatchenko, A., Alfè, D., & Kim, K. S. (2012). First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects. Journal of Chemical Theory and Computation, 8(11), 4317-4322. doi:10.1021/ct300711r.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Tkatchenko, Alexandre1, 2, 著者           
Alfè, Dario3, 著者
Kim, Kwang S.2, 著者
所属:
1Theory, Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin, DE, ou_634547              
2Department of Chemistry, Pohang University of Science and Technology, Pohang 790−784, South Korea, ou_persistent22              
3London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Supramolecular host–guest systems play an important role for a wide range of applications in chemistry and biology. The prediction of the stability of host–guest complexes represents a great challenge to first-principles calculations due to an interplay of a wide variety of covalent and noncovalent interactions in these systems. In particular, van der Waals (vdW) dispersion interactions frequently play a prominent role in determining the structure, stability, and function of supramolecular systems. On the basis of the widely used benchmark case of the buckyball catcher complex (C60@C60H28), we assess the feasibility of computing the binding energy of supramolecular host–guest complexes from first principles. Large-scale diffusion Monte Carlo (DMC) calculations are carried out to accurately determine the binding energy for the C60@C60H28 complex (26 ± 2 kcal/mol). On the basis of the DMC reference, we assess the accuracy of widely used and efficient density-functional theory (DFT) methods with dispersion interactions. The inclusion of vdW dispersion interactions in DFT leads to a large stabilization of the C60@C60H28 complex. However, DFT methods including pairwise vdW interactions overestimate the stability of this complex by 9–17 kcal/mol compared to the DMC reference and the extrapolated experimental data. A significant part of this overestimation (9 kcal/mol) stems from the lack of dynamical dielectric screening effects in the description of the molecular polarizability in pairwise dispersion energy approaches. The remaining overstabilization arises from the isotropic treatment of atomic polarizability tensors and the lack of many-body dispersion interactions. A further assessment of a different supramolecular system – glycine anhydride interacting with an amide macrocycle – demonstrates that both the dynamical screening and the many-body dispersion energy are complex contributions that are very sensitive to the underlying molecular geometry and type of bonding. We discuss the required improvements in theoretical methods for achieving “chemical accuracy” in the first-principles modeling of supramolecular systems.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2012-08-132012-10-052012-10-052012-11-13
 出版の状態: 出版
 ページ: 6
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1021/ct300711r
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of Chemical Theory and Computation
  その他 : J. Chem. Theory Comput.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Washington, D.C. : American Chemical Society
ページ: - 巻号: 8 (11) 通巻号: - 開始・終了ページ: 4317 - 4322 識別子(ISBN, ISSN, DOIなど): ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832