日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Resource limitation and reproductive effort in a planktonic rotifer

Stelzer, C.-P. (2001). Resource limitation and reproductive effort in a planktonic rotifer. Ecology, 82(9), 2521-2533.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Stelzer, K.-P., 2001, S- 37730.pdf (出版社版), 290KB
 
ファイルのパーマリンク:
-
ファイル名:
Stelzer, K.-P., 2001, S- 37730.pdf
説明:
-
OA-Status:
閲覧制限:
制限付き (Max Planck Institute for Evolutionary Biology, MPLM; )
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Stelzer, Claus-Peter1, 著者           
所属:
1Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_976547              

内容説明

表示:
非表示:
キーワード: allocation pattern; egg size; food level; life table; ovary size; reproductive effort; reproductive threshold; resource abundance; rotifer; Synchaeta; trade-off
 要旨: Individuals that live in resource-limited environments are faced with an allocation problem since they generally do not have enough assimilated energy to fuel each of the processes of reproduction, somatic growth, and storage at the physiological maximum rate. Thus, they have to decide on the proportions at which they allocate energy to the various processes. In laboratory experiments and field observations, I found that the common planktonic rotifer Synchaeta pectinata increases the proportion of energy allocated to reproduction (reproductive effort, RE) as food becomes more limited. This change in the allocation scheme along a gradient of food concentrations was inferred from volumetric measurements of egg size and the size of the elliptically shaped ovary. Synchaeta pectinata used the contents of its ovary either for reproduction (increasing the size of the individually and consecutively produced eggs) or for storage (enhancing survival during starvation by resorption of this material). As egg size was relatively constant across food levels, the higher RE at low food concentrations was not due to the fact that Synchaeta channeled a larger absolute quantity of energy into reproduction, but rather that they lowered the threshold size for reproduction of the ovary and hence reproduced earlier. This pattern was also suggested by the results of the field study: when the resource concentrations declined during the study period, the ovary size of field-caught Synchaeta decreased considerably whereas the size of their eggs, collected at the same dates, stayed relatively constant. The lower reproductive threshold at low food concentrations resulted in a small ovary size after each egg deposition which implied a twofold cost. First, rotifers with small ovaries were less resistant to starvation because they could resorb only a little material from their ovaries. Second, it took longer for them to produce the next egg since a small ovary took longer to recover in size than a large ovary (for a given food concentration). The plasticity in the allocation scheme of Synchaeta pectinata can be interpreted as an adaptive strategy to variable food conditions. By lowering their reproductive threshold when food becomes limited, Synchaeta pectinata increase their chance to produce at least one offspring during their lifetime. In contrast, the higher reproductive threshold under good food conditions results in better maternal condition and, therefore, facilitates future reproduction

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2001-09
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 114930
その他: 2033/S 37730
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Ecology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 82 (9) 通巻号: - 開始・終了ページ: 2521 - 2533 識別子(ISBN, ISSN, DOIなど): ISSN: 0012-9658